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I. INTRODUCTION

A significant factor in the survivability and eventual recovery of
battlefield wounded is that medical attention be given promptly, in many
instances prior to reaching a MEDEVAC Unit. One of the more serious cases is
that of wounds directly involving the chest necessitating ventilatory support
to sustain life. Conventional methods may be of marginal value, and could even
further hinder recovery by adding to chest trauma. Clearly, a portable
ventilation device that could be used on site by medics without stressing the
chest area would be very valuable.

In recent years there has been increased interest in novel ways of
ventilating patients (cf. Refs. 1, 3, 4), to better treat their diseases while
not exaggerating or introducing other disorders that may result as a
consequence of the ventilating procedure. The most common way of ventilating a
patient is to mimic the normal breathing pattern of healthy individuals. 1In
this process, air is convected through the lungs at the breathing frequency by
pushing fresh gases through the airways either by applying a positive pressure
at the airway inlet or a negative pressure around the thorax. In either case,
the frequency is kept at the breathing frequency while the tidal volume is
equal to the amount inhaled during normal breathing.

The procedure, while very effective in a nontraumatized chest, may not be
suitable for patients suffering from penetrating chest wall injuries or severe
trauma to or near the thoracic cavity. 1In these cases, the patient's lungs do
not respond properly either due to alveolar damage resulting in reduced
quantities of 02 reaching the blood, or due to the creation of fistula tracts.
Other clinical examples of situations where normal breathing frequency and
tidal volumes might be detrimental to the well-being of the patient are: (1)
Bronchoplural Fistula, (2) Adult Respiratory Distress Syndrome, and (3) Flail
Chest.

Pogitive pressure ventilation has been utilized for pulmonary support for
the last 25 years. Over the past 5 to 10 years, detrimental aspects of
positive pressure ventilation have come to the foreground. These associated
problems include baro-trauma, decrease in cardiac output with resultant
decreased tissue perfusion, and the necessity for tight occlusion of the upper
airway, which can frequently result in tracheal stenosis and other tracheal

complications. High frequency jet ventilation has been prevalent in Europe for
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the last ten years. Rather than supplying breaths at the normal breathing
frequency of 1/3 Hz (20 breaths/minute), in high frequency jet ventilation
breaths are delivered at frequencies as high as 2 Hz (120 breaths per minute).
Its major advantage over positive pressure ventilators of the usual type is the
decreased intrathoracic pressure leading to less cardiac impairment and,
therefore, fewer problems associated with decreased tissue perfusion with
oxygen. The smaller tidal volume used by high frequency jet ventilators also
results in less baro-trauma. Ventilation of this nature can be accomplished
even with an uncuffed endotracheal tube, therefore, eliminating the problems
associated with pressure necrosis of the trachea.

Recently, attempts have been made to use a different mode of ventilation,
i.e. ultra-high frequency jet ventilation. This process 1s completely
different from the two previous processes because it augments mass transport
rather than relying upon the movement of gases in bulk quantities into the
gas—-exchanging areas of the lungs. It offers all the advantages of the high
frequency jet such as low intrathoracic pressure and negligible effect on
cardiac output, and could be used either with a cuffed or uncuffed endotracheal
tube. Its further usefulness is that the process by which it achieves enhanced
ventilation, augmented mass transport, will establish the highest possible
oxygen content in the arterial blood and will be most efficient in the
elimination of carbon dioxide. Because of minimal chest wall movement
associated with the technique, it will lend itself to use in patients with
penetrating chest wall wounds and/or trauma of the rib cage.

Ultra-high frequency jet ventilation will augwment mass transport only at
very high frequencies typically in the range of 5 Hz to 20 Hz (300 to 1200
breaths per minute). Although there is extensive theoretical and experimental
basis for the process (cf. Ref. 4, 8, 9, 10, and 1l1) there are only limited
positive clinical findings reported in the literature. The reason for this
situation is that the methods previously used to produce the ultra-high jet
frequencies could not deliver the required tidal volumes to adequately
ventilate the patient.

Recently, we at Scientific Research Associates in conjunction with
Hartford Lung Physiclans have constructed a prototype multifrequency jet
ventilator which does not have the limitation mentioned above and has been
succegsgsfully used in laboratory and clinical tests on pigs. The test results

which are described in Appendix 1 have been extremely positive and encourage us
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to believe that our ventilator can be of significant benefit to patients
suffering from injuries and diseases of the type described above. Since the
portable model of the ventilator is rugged and lightweighnt, and can easily be
maintained and sterilized, containing only one moving part - a solenoid
actuated pneumatic valve, we believe that it could be very attractive for use
under battlefield conditions or other emergency situations. A more complete
description of the operation of the ventilator is given in Section 3.

More recently the in-hospital version of the ventilator, the APT 1010, has
been used to ventilate patients with ARDS under FDA approved trials at Hartford
Hospital. As of 1 June 1987, ten patients have been ventilated on the APT
1010, with some up to 10 days. Four out of five patients with ARDS of less
than forty eight hours have recovered from their lung injury when ventilated on
the APT 1010. Although no statistical conclusions as yet can be drawn from
these results it is noteworthy that the national average for recovery from ARDS
is approximately 30%Z. In addition, since ARDS can be a complicating factor in
lung trauma, the encouraging results obtained in the FDA trials indicate that
this form of ventilatory support may be useful for treating some of the
sequelae of penetrating chest wounds.

As noted above, our multifrequency jet ventilator would be advantageous
for use with penetrating chest wounds. Further, it could also be of benefit in
the presence of a noxious chemical environment where paralysis of the chest
area or burning and scarring of the internal membranes could lead to impaired
breathing. In such cases, which usually occur under adverse conditions where
highly trained medics are unavailable but immediate care 1s required, the
multifrequency jet ventilator would be of great value. Transcutaneous
cricothyroidostomy could be administered by relatively untrained medics
employing our ventilator to give the required immediate care until the patient
is evacuated to a more suitable environment. Thereafter, our ventilator could
be operated in its normal mode. Furthermore, the augmented mass transport that
results may also facilitate the removal of the noxious gases more rapidly.

The results of the animal experiments conducted to date (cf. Appendix 1 for
a complete description of these studies) indicate that the present device was
superior to conventional positive pressure ventilation in providing the highest
oxygen levels in the blood. These experiments, however, do not precisely
simulate injuries and diseases sustained under battlefield conditions. It was,

therefore, the principal objective of the Phase I effort to conduct a series of
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animal experiments that would establish the efficacy of the ventilator and the
ventilation technique for treating battlefield sustained injuries, namely
penetrating chest wounds.

The other objective of the Phase I research effort was to investigate a
method for measuring the resonant frequency of the lung system that could be
used in conjunction with the multifrequency jet ventilator. Our experiments
with pigs have indicated that significant improvement in oxygenation can be
obtained at a unique "optimum" frequency, which varies from animal to animal.
It is expected that similar behavior exists for humans. We believe that this
frequency may be related to the natural or resonant frequency of the lungs.
Furthermore, the method used to measure the resonant frequency could also be
applied to determining the patient's lung mechanics, thereby aiding in the
evaluation of his recuperative progress.

The results of SRA's Phase 1 study for a simulated penetrating chest wound
in an animal show that ultra-high frequency jet ventilation was superior to
other forms of ventilation by enhancing 0, loading. In addition, there was
significantly lower flows through the broncho-pleural fistula when the animal
was ventilated with the ultra-high frequency jet. Although the data collected
were for laboratory controlled reproducible injuries in animals, these results
clearly indicate that ultra-high frequency jet ventilation could also be
effective in sustaining humans with similar types of injuries.

In the following sectlions the report describes in detail the experiments
conducted, the statistical analysis of the data and the conclusions reached.
The report is divided into five sections, Section 2 is a summary of the Phase
I technical objectives. Section 3 provides a brief description of the
multifrequency jet ventilator used in the experimental program. This is
followed in Section 4 with a description of the experimental program, protocol,
results and a statistical analysis of the data. In Section 5, a description of
the apparatus for measuring the resonant frequency of the lung system is
described, as well as a discussion of the results obtained. Section 6 contains

the conclusions and recommendations.




2. PHASE I TECHNICAL OBJECTIVES

The Phase I technical objectives were as follows:

l. Determine the effectiveness of three different modes of mechanical
ventilation in treating simulated penetrating chest injuries by
performing laboratory tests on animals employing the following modes
of ventilation:

(a) conventional ventilation (6 - 30 BPM)
(b) high frequency jet (120 - 180 BPM)
(c) ultra-high frequency jet (> 300 BPM)

2. Construct a device that could be used in conjunction with the
multifrequency jet ventilator to measure the resonant frequency of the
lung system and investigate what relation exists between the natural

frequency and the 'optimum' ventilation frequency.

3. DESCRIPTION OF THE MULTIFREQUENCY JET VENTILATOR

As described in Section 1, augmented mass transport can be used
beneficially to ventilsate the lungs. This phenomenon combines two diverse
disciplines, fluid mechanics and pulmonary medicine. The collaboration of
Scientific Research Associates and Hartford Lung Physicians, each with
expertise in their respective fields, offers a unique opportunity to
investigate this area from multiple viewpoints, leading to a better
understanding of the physical processes that are involved. Indeed, the design
development and construction of our prototype high frequency jet ventilator
could not have been accomplished without this interdisciplinary collaboration.

The device we have built is a multifrequency jet ventilator of the
solenoid valve type. It can operate throughout the useful frequency range
including those employed in positive pressure ventilation, high frequency jet
and the present ultra-high frequency jet, with the frequency chosen to best
treat the patient. The operating frequency can be varied from 1/15 Hz (4
breaths/min) to more than 50 Hz (3000 breaths per minute) and the inspiratory
time can range from 57 to 952. Specifically, one is able to vary the
frequency, the driving pressure of the gas, and the fraction of the cycle time

during which the solenoid valve is open. These in turn control tidal volume,
-5-




the I/E (inspiratory to expiratory) ratio, and the respiratory rate of the
patient. The major components of the ventilator include a control module
(electornic control and power system), a power module (solenoid valve and
pressure regulator) and a motive module (motive nozzle, entrainment plus
humidification system). The electronic controlling device is specifically
designed to enhance the opening and closing of the solenoid valve, such that
even at high frequencies a virtually square wave pattern of gas is emitted with
each pulse. This allows larger tidal volumes for a given driving pressure,
frequency and inspiratory time.

The ventilator works on the following basis: A high pressure gas source
enters into the solenoid valve, the electronic controlling device opens and
closes the solenoid valve according to preset conditions. The time that the
valve 1s open is set by the frequency and the inspiratory time. This plus the
driving pressure will result in a given tidal volume. The gas is then
transported through low compliant tubing to the motive nozzle in the
entrainment module. The entrainment module has a low velocity flow of
humidified gas through it; part of which is entrained by the high velocity jet
issued by the motive nozzle during the inspiratory part of the cycle, the
exhaled gas is removed along with the low velocity gas flow through the
entrainment module.

In the past, one of the major obstacles in the way of the development of
such an ultra-high frequency jet ventilator was the inability to deliver
adequate tidal volumes to the patient in the desired range of frequencies. The
joint efforts of Scientific Research Assoclates and Hartford Lung Physicians
were able to overcome this difficulty by introducing several novel innovations
into the design. These included a specialized electronic circuit to drive the
solenoid valve, allowing it to open and close significantly faster than in its
normal mode of operation and aerodynamically designed components for use in the
entrainment module to efficiently entrain oxygen rich humidified gas and to
remove exhaled CO,.

There are two versions of the APT 1010 multifrequency jet ventilator, an
in-hospital unit and a portable unit. Although both versions have the same
basic components there are several distinct differences between them. The
in-hospital unit, as required by the FDA, has built—-in safety alarm systems as
well as other monitoring equipment. It is intended for prolonged use in the

intensive care unit and hence mobility is not a significant concern. In order
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to effect the desired functions the unit is microprocessor controlled. Such a
mf croprocessor system permits many enhancements which have been included in the
APT 1010, viz. a sophisticated data acquisition system and a data archival and
retrieval system. It should be noted, however, that subsequent prototype units
have been reduced in size to an extent that, with an appropriate battery power
source, could be made portable if deemed necessary.

In contrast to the in-hospital unit, the portable unit 1is intended for
emergency, temporary use and therefore does not require the complete complement
of sensors and safety alarm systems. This permits the unit to be built with
simplified electronic controls. Hence, the unit can be made extremely small,

light weight and rugged and requiring minimal power consumption.

4, SIMULATION OF A PENETRATING CHEST WOUND

4a. Materials and Methods

As noted previously, the pig was used as the test animal. There are
several reasons for this. First, large animals can be readily obtained, in
weights approaching that of an adult human. Second, since the pig's lungs are
less efficient than those of a human, being less compliant and having less
collateral ventilation between alveoli positive conclusions reached in the
study would carry over to humans. For other animals such as dogs results may
be inclusive. Third, the pig also has other physiological similarities with
humans. The experiments were conducted at the Hartford Hospital Animal
Laboratory where our previous tests were held.

Yorkshire female swine weighing between 80 and 100 pounds were used as
test animals. No two were from the same litter. The animals were supplied by
the breeder

Earl Parsons and Sons
Mill valley Road
Hadley, Mass. 01035

Prior to surgery, the preanesthesia administered to the animal was
atropine with dosage .02 mg/lb and acepromezine with dosage 5 mg/lb. During
the experiments, Nembutal (pentobarbital) and Pavulon (pancrium bromide) were
administered intravenously at the rate of 21 mg per half hour and 3-6 mg per

half hour, respectively. At the conclusion of the experiment the pig was given
40 meq of potassium chloride in a 20 cc bolus as the euthanesia agent.
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After the animals were sedated and anesthetized a carotid arterial line
was placed and a Swan-Ganz catheter was inserted through the internal jugular
artery. Additional venous accesses were also placed. The animal was then
intubated and placed on the APT 1010 ultra-high frequency jet ventilator and
optimal gas exchange was achieved by varying the driving pressure (10-50 psi)
and/or the frequency in the range of 7.5 Hz and the I/E ratio was set to 30%.
Following this, the animal was switched to a volume limited conventional
ventilator and tidal volume and respiratory rate were varied to achieve optimal
gas exchange. Respiratory rates varied from 8-20 breaths per minute and tidal
volumes between 600-1200 ml. During this perlod baseline arterial blood gases
and cardiac output were obtained and arterial pressure was monitored as well as
other physiological data, i.e. pulse, blood pressure, pulmonary artery pressure
(PAP), pulmonary capillary wedge pressure (PCW) and pH. The mean arterial
pressure and saturation were computed using the collected data.

After the stabilization period and having obtained the baseline values
surgery began. The animal was placed back on the APT 1010 and a thoracotomy
was performed. A right upper lobe lobectomy was then carried out. The
bronchial stump was connected to a Fleishe pneumotac through a plastic cannula
and rubber tubing of similar diameter. The Fleishe pneumotac has previously
been calibrated for various flows in the pulmonary laboratory. The thoracic
cavity was left open to the atmosphere. This surgical procedure was easily
reproducible, which was important in obtaining statistically meaningful data.
During the procedure the pig was ventilated using the ultra-high frequency jet
ventilator at 7.5 Hz. This mode of ventilatory support was requested by the
surgeon, Dr. Rocco Orlando, since it minimized chest movement and permitted the
procedure to be easily performed.

The experimental procedure called for randomization of the three different
modes of ventilation, 1.e. ultra-high frequency jet ventilation (frequency of
5-10 Hz.), conventional ventilation (frequency 1-3 Hz.) and conventional
ventilation with 8-20 breaths per minute. Each experimental sequence consisted
of randomly selecting one of the three modas of ventilation, followed by random
selection of the second and then the third. The animal was allowed to
equilibrate for 10 minutes before any hemodynamic ¢ arterial blood gas
measurements were made in each mode of ventilation. At the end of completing
one series of experiments the randomization again was carried out. 1If the

animal survived, three sets of data were collected for each animal in each of
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the ventilatory modes, or nine data points were gathered for each experimental
animal. Hemodynamic data consisted of arterial blood pressure, cardiac output,
pulmonary artery pressure and pulmonary capillary wedge pressure. Arterial
blood gases were analyzed using a Corning arterial blood gas analyzer.
Bronchopleural fistula flow was obtained by integrating the flow curves
obtained through the Fleishe pneumotac using a K+E planometer. The Fleishe
pneumotac was checked at the end of the experiment to ensure that no changes in
calibration factors had occurred. A complete listing of all data taken and
definitions of parameters are given in Table 1.

Eleven experiments (with eleven animals) were conducted. Of these eleven,
data taken iIn ten experiments were used in the statistical analysis due to the
early demise of animal #5. The data used in the statistical analysis are shown
in Tables 2 through 4. Table 2 shows the raw data in spreadsheet form, while
Tables 3 and 4 present the data for the unbalanced and balanced design,
respectively (cf., Section 4b). The data was analyzed using STATGRAPHICS, a PC
based statistical package marketed by STSC, and all variables were considered.

A value of a=.05 was considered significant.

4b. Statistical Analysis

The hypothesis that was tested in the series of experiments is that
ultra~-high frequency jet ventilation is superior to other modes of ventilation
in the physiological simulation of penetrating chest wounds in pigs, i.e. a
bronchoplueral fistula. The hypothesis was tested by considering a sequence of
ten experiments employing the protocol described previously and measuring the
physiological animal parameters and flow through the fistula to determine how
well the animal was ventilated. Statistical analysis of these data is used to
draw conclusions concerning the veracity of the hypothesis.

The goal of the experimental design is to examine the performance of
three modes of ventilation by eliminating the test order effect and screening
out the test timing and animal effects. Special care was taken in designing
the experimental setup that was employed. In view of the nature of the present
series of animal experiments associated with the variability of the animals
themselves as well as their progressive deterioration as the test proceeded,
test timing, which may be a significant effect, must be taken into account.

Hence, the following conditions were met for the duration of the experiments:




(1)

(2)

(3)

With

previous

termination of the experimental program.

confirm the randomness of the data are shown in Table 5.

Every testing day the procedure for running any particular ventilator

was kept the same;

The system parameter setup for running one particular ventilator was

kept the same;

A three-way layout randomized block design was employed.

regard to item (3) the randomized block design is described in the

section.

An a posteriori estimate of randomness was conducted at the
The results of this test which
It should be noted

that the randomized block design differs somewhat from the standard 3x3 Latin

square design in that each sequence of the three ventilator tests per animal is

randomly chosen before the beginning of the sequence rather than at the outset

of the experiment.

The experiment has the following tabulated design:

Ventilator

Animal # Test timing order A B c
1 tl (1 (m) (n)
t2 () () ()

t3 () () ()

2 tl () () ()
t2 () () )

t3 () ) )

3 tl () () ()
t2 ) () )

t3 ¢) () )

10 tl ) ¢) ()
t2 ) ¢) ()

t3 ) ) ()
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where 1, m and n is a random choice of permutations of the three ventilators
which can eliminate the test order effect.

The strategy of the three-—way layout randomized block design can be
summarized as follows; there are an equal number of observations in the cells.
It includes single effects and two and three factcr interactions. An analysis
of variance was conducted and the main effects and interactions were

considered. Mathematically, the formulation can be expressed as follows:

A B c AB BC AC ABC
=+ + + + +
Tijkm =M Py vyt o tag o et ek (D
where
- 2
eijkm IIDN (0, o°)
and
p = the general mean, U= Yeos,
A “A
o, = the ventilator effect, @ = Yieeo Veoo
B “B
aj = the animal effect, Gj = y.j... ~Yeoe,
o ~C
@ = the test timing effect, A = Yeopees “Yeoo
AB “AB

a,, = two—factor A,B interaction, aij = y.j.. “Ygqeer -y.j.. + Yoo,

BC “BC
a,, = two—factor B,C interaction, ij y'jk' -y.j.. AR + Veoo,

AC ~AC

% = two-factor A,C interaction, Gi = Yogoge TVgeer Voo + Yooo,
uABc = three-factor A,B,C aABC =y e Yo o0 =Yoo ¢ =Y s o ¥ oo
1jk interaction 1jk ijk 3 jk ik i

+'y‘joo +y..k. -Yoo.,

with the following analysis of variance table:
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Source SS Degreees of Freedom E(MS)
A main effects SS = JKM Z(dA)2 I -1 o2 + JKRMo?
A i i A
B main effects $S = IKM £(od)?2 J -1 0% + IKMo?
B i3 B
C main effects SS = IM Z(ac)2 K-1 o + 1JMo?
C k k C
AB interactions SS = KM Zz(u‘,AB)2 (r-Da-10 0% + RMo?
AB ij  1j AB
“BC 2 2
BC interactions SS = IM II(a ) (J - 1)(K-=-1) o + IMo
BC jk ik BC
AC interactions SS = JM ZZ(ciAC)2 (I - 1)K -1 0% + Mo?
AC ik ik AC
ABC interactions ss =M £Zf(atP6y?2 (I - W - DK =-1) o2 + Mo?
ABC ijk 1ijk ABC
Error SS = IIif (y -y )2 IJK(M - 1) o2
e ijkm 1ijkm ijk
Total about grand IIIi(y - Yeees)? IJKM - 1
mean ijkm ijkm
where
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In each cell of the experimental design, one observation is taken, i.e., m=l in
Equation (1).
After the means and variances are of the experimental data are calculated
the following examinations are carried out:
i. Addressing the differences in the ventilator effect
ii. Testing the significance of main effects
iii. Testing the significance of two factor interactions
iv. Testing the significance of three factor interactions

v. Testing the adequacy of the model employed

Two hypothesis testing procedures are considered:

1) F-Test - testing whether one particular effect is signifiant, e.g.,

we reject Ho at the 100a% significance level if

IJK(M~-1)SSA S F (3)
(T-1)SSe (I-1), IJR(M-1); o

and accept Ho is the inequality runs the other way.

MS F-Ratio Test Ho

ss,/(1-1) LIK(M-1)SS, /(1-1)SSe @ =0 W
§55/(3-1) LIK(M-1)SS ,/(I-1)SSe a‘j’ =0 ¥

85 ./ (R-1) LIK(M-1)SS o/ (R-1)SSe o =0 Wk

88 5/ (I-1)(3-1) LIK(M-1)SS, ,/(1-1) (I-1)$Se a?? -0 W¥ij
$8, ./ (3-1) (K-1) LIK(4-1)SS . ./ (3-1) (K-1)SSe agﬁ -0 ¥k
s, ./ (1=1) (R-1) LIK(M-1)SS , ./ (1-1) (R-1)SSe oif =0 Wk
$8,5¢/ (I-D(I-1)(R-1)  LIR(M-1)$8,5 /(I-1)(J-1)sSe a:;i -0 W¥ijk

SSe/IJR(M-1)
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2) T-Test - testing whether the dfference between two treatments is
significant, e.g.,

Ho = u? = ag

We have a confidence interval with 100a% significance level as

~A ~A 1 1
(Gl - 62) + t\)’c/Z S — (5

We accept Ho if the calculated value is within this interval and reject Ho

otherwise. (Note that o?(1/n; + 1/n,) is the variance of a% - ag, and S? is

2, v is the degrees of freedom associated with Sz,

the unbiased estimate of o
ny, np are the observation numbers of a; and a,, respectively.)

The STATGRAPHICS statistical package was used to obtain the statistical
analysis presented herein. It should be noted that two factor and three factor
analysis can only be obtained with a balanced design, i.e. the same number of
cells in each experiment. During the experimental program of the eleven animal
experiments conducted, ten were used in the analysis as per the original
protocol, since one animal (number 5) died early in the experiment. Of these
ten, eight had nine entries per experiment, three ventilators by three
sequences. However, in experiment #2 four sequences were conducted and in
experiment #3 only two sequences were completed. Hence for the balanced
analysis nine experiments were employed (using the first three sequences of
experiment #2, while for the unbalanced design the full ten experiments were
considered.

In Tables 6 through 8 the analysis of variance and significance tests are
presented for the a/A ratio and flow through the broncopleural fistula. Table
9 summarizes these results. The graphical data are presented in Figures _ .
For the sake of brevity, selected balanced design results are shown. It should
be noted that there was no discernible difference between the balanced and
unbalanced design results.

From the statistical analysis of the a/A ratio it can be concluded that

(1) Three main effects: animal, ventilator and sequence, are significant

effects in determining the a/A ratio of the treatment. Other terms
in Eq. (1) appear not to be significant.
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(i1) The residual analysis indicates that 90% of the a/A ratio variation
of the treatment can be interpreted by the chosen mdoel. The
residual effect does not reject the adequacy of the employed model.

(111) For different ventilators, the resulting a/A ratio is significantly
different, as shown in Fig. 2. The test of significance is
performed and the results are displayed in Table 7c. It indicates
that UHFJV provides the highest a/A ratio among the three different
modes of ventilation. This conclusion is based upon the unanimous
agreement under 95% confidence interval, 99% confidence interval,

Tukey test and Scheffe test.

4c., Discussion of Results

The data obtained in this experiment demonstrated a significant benefit in
oxygen loading, as evidenced by an improved a/A ratio during ultra-high
frequency jet ventilation, as compared to either conventional jet ventilation
or conventional ventilation. In Figs. 2, 3 and 4 the mean a/A ratios at the
95Z confidence level are plotted as functions of ventilator, sequence and
animal (experiment #), respectively. With regard to ventilator dependence
(cf. Fig. 2), it is readily evident that ultra-high frequency jet ventilation
is superior to other modes of ventilation. This is borne out in the
significance levels that are given in Table 7c and are summarized in Table 9.
It 18 noteworthy that even at 997% confidence level, the a/A ratio obtained for
the ultra-high frequency jet ventilator still demonstrates superiority over the
other forms of ventilation (cf. Fig. 5).

There was a marked decrease in the gas flow through the bronchopleural
fistula in ultra-high frequency jet ventilation as compared to the other two
modes of ventilation. Figure 6 demonstrates this result convincingly, where
the flow through the bronchopleural fistula is plotted as a function of mode of
ventilation for the 952 confidence level. This result is further confirmed in
Tables 8c and 9 in which the significance levels for differences in ventilators
are presented. In addition, the flows through the bronchopleural fistula as a
function of ventilator, sequence and animal are presented in Figs. 6, 7 and 8.

Hemodynamics did not show any significant difference in any of the modes
of ventilation. Although the PCO, was gsomewhat lower in the conventional jet
ventilation than in either of the other modes, this did not reach any clinical
significance, although it did result in a statistically significant

-15-




difference. These results are shown in Figs. 9 and 10 in which 0, delivery and
0, content as functions of ventilation mode for 95% confidence level are
presented.

In studying the acoustic and fluid dynamics of the lung system it is
helpful to employ electrical analogies. Thus, flow and pressure become current
and voltage, respectively, and viscous resistance, compliance and mass can be
related to electrical resistance, capacitance and inductance, respectively.
Using this analogy we can gain insight into the mechanisms controlling the
ventilation in the animals and assist in the explanation of the observed
results.

One can view the airways as a resistance, first in series, then in
parallel, ending in a finite capacitance (cf. Fig. 1). One would then
anticipate that under conditions of conventional ventilation the infinite
capacitance afforded by a bronchopleural fistula (BPF) would result in uneven
distribution of gas, favoring ventilation down the pathway of infinite
capacitance. Typical jet ventilation frequency, i.e., 1-3 Hz., employs smaller
tidal volumes. This effectively reduces the perceat of the total capacitance
used for gas exchange in the lungs, allowing more favorable competition with
the infinite capacitance of the BPF.

The APT 1010, used in this experiment, uses augmented diffusion as well as
convection as its means of ventilation. Gas exchange therefore relies upon
creation of concentration gradients to some extent, as well as convective and
Taylor dispersion-type mechanisms. The low tidal volumes, relative stable lung
volumes and high frequencies would therefore negate the effect of the infinite
capacitance afforded through the bronchopleural fistula. This would then result
in a redistribution of gas throughout the lung unit in a more unified manner,
decreasing the overall ventilation of the bronchopleural fistula and improving
ventilation in a previously hypoventilated area. The results of this study
suggest that this is the case. There has been a clear difference in the a/A
ratios, suggesting better matching of ventilation and perfusion throughout the
lung zones as compared to conventional ventilation and conventional jet
ventilation. There has also been a marked diminution in the flow through the
bronchopleural fistula during ultra-high frequency jet ventilation, as compared

to the other two modes.




The experimental design allowed us to single cut the ventilators as the
causative agent for these discrepancies. The randomization of mode of
ventilation in each animal negated the possibility that time would be a factor
or that changing from conventional to ultra-high frequency jet ventilation or
any of the other possible permutations might result in improvement in gas
exchange, irrespective of the physiological changes that occured in the lung.
Furthermore, when one looks at 0, loading, i.e., a/A ratio, as a function of
flow through the bronchopleural fistula, one does not see a discernible
relationship. This suggests that the a/A ratio, which in this model is mainly
dependent on ventilation perfusion matching, 1s independent of flow through the
bronchopleural fistula. This would necessarily be the case if gas exchange was
diffusion-dominated rather than dependent upon bulk gas flow. Relative to the
total pulmonary capacitance there is no significant difference between the
volumes delivered in these two ventilatory modes, yet the a/A ratio and BPF
flow were significantly better in the UHFJV group. In this regard, the
gradient for gas exchange 1s actually slightly greater in the intact bronchial
alveolar units (PAO, — PVO,) than in the bronchopleural fistula units (PAO, -
PaMO2). The reduction in bronchopleural fistula flow at the high
frequencies is probably not relying soley on gases moving down a concentration
gradient. In fact, resistance times capacitance (RC) constants are more likely
responsible for the more even distribution of gas exchange achieved with
UHFJV. The tidal volumes employed in UHFJV are about 602 of those achieved in
HFJV. This, of course, would not be the case using large tidal volumes at
conventional respiratory frequencies.

In analyzing the data we have taken into account the time from the start
of the experimentation after surgery was completed, as well as the relationship
of the preceding type of ventilation on gas exchange, we have found that there
was no significant relationship between switching from one type of ventilation

to another with respect to gas exchange, since the time factor was equalized

for all three modes by the randomization of the experiment.




5. RESONANT FREQUENCY OF THE LUNG SYSTEM

5a. Background

The current methodology employed to determine the physiological changeé to
the lung while a patient 1s being sustained on a jet ventilator relies either
upon an examination of chest X-rays and/or the determination of the compliance
of the lung. The former gives a qualitative measure while the latter requires
that the patient be removed temporarily from the jet ventilator. Relying
solely on arterial blood gas analysis may not be sufficient to detect
therapeutic changes to the lung but may only indicate how well the patient is
being ventilated. Hence, a method that could give a quantitative measure of
changes to the lung while being ventilated, namely changes in lung mechanics,
would be a valuable tool.

For the ultra-high frequency mode of ventilation, determination of lung
mechanics including the resonant frequency of the lung system would offer
additional benefits. Since the frequency of the pulsed gas stream supplied to
the patient is a controlling factor for this mode of ventilation, choosing the
appropriate or an 'optimum' frequency would be advantageous. Experience with
patients suffering from ARDS in the FDA approved trials at Hartford Hospital
being ventilated on the in-hospital version of the APT 1010 has indicated that
as a group they can be successfully ventilated at 5 Hz. However, one patient
did show marked improvement at a single frequency, which in her case was 5.9
Hz. Although no conclusions can be drawn from this isolated case it is
reasonable to expect that there is an optimum frequency which is different for
each patient and may be a function of the disease. Further, since the
ventilation frequency employed on human subjects is near the resonant frequency
of the lung system, the 'optimum' frequency may be related to the resonant
frequency.

A robust method for determining lung mechanics is based on forced
excitation techniques which was popularized by DuBois (Ref. 2). In this
procedure, random or sinusoidal pressure oscillations are induced at the mouth
of the subject. By measuring the amplitude and phase angles between the
pressure waves and the induced flow the impedance of the lung system can be
determined. Each of the two methods, employing either a single sinusoidal

frequency or a distribution of random frequencies, offer their own specific

advantages. However both techniques require that care be taken in setting up
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the apparatus and in interpreting the data. Reference 6 gives a more recent
review of the two procedures.

These methods can be readily understood by considering the electrical
analogy of the lung system (cf. Fig. 1), In an electrical system consisting of
resistors, capacitors and inductors for a given voltage input there is a
corresponding current output. The impedance which is the ratio of the two is
composed of resistive and reactive components. The impedance will vary as a
function of the impressed frequency of the input voltage signal. At resonance,
when the voltage and current are in phase, the reactive component vanishes and
the impedance 1is totaly resistive. This electrical analog carries directly
over to the acoustic properties of the lung system.

The single frequency technique generates a clean signal which does not
require sophisticated spectral techniques to analyze. Impedance and phase
angle can be determined, but only at that given frequency. Since in order to
obtain a reasonable description of the mechanics of the lung the impedance over
the frequency range < 50 Hz is required, this procedure is time consuming,
necessitating many individual applications. This method, however, could be
used to obtain the resonant frequency by displaying the flow signal versus the
pressure signal on an oscilliscope thereby generating a Lisajous figure. At
resonance, when the two signals are in phase the figure reverts to a straight
‘line.

An alternate procedure i8 to use random white noise which has the entire
required spectrum (distributed with equal energy) so that the impedance of the
lung system as a function of frequency can be obtained in a single procedure.
This method, which was successfully employed by Michaelson et al. (cf. Ref. 5),
requires that the data be spectrally analysed employing Fast Fourier Transform
techniques (FFT). Further, the signal does contain the ensemble of frequencies
which may induce noise and must therefore be carefully controlled. Since all
information 1is retained in this process, an inspection of the phase angle
between the flow and pressure signals as well as the amplitudes of the pressure
and flow signals can be used to determine the resonant frequency.

In view of the ease with which the impedance can be determined in a single
run it was chosen as the preferred method and its applicability for use with
the ultra-high frequency jet ventilator was investigated. The goal during the

Phase I effort was to determine the feasibility of the procedure.
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5b. Discussion of Experimental Procedure and Results

The general configuration of the apparatus used for measuring the resonant
frequency of the lung system is shown in Fig. 1l. It is similar to that used
by other researchers, e.g. Michaelson et al. (Ref. 5). A four inch, long throw
woofer which is driven by a white noise generator creates the acoustic pressure
waves. The driving frequence is low pass filtered at 50 Hz. These waves are
transmitted to the mouth of the subject through one inch plastic tubing.
Interposed in the line is a pressure transducer and a Fleishe pneumetac, the
latter being used to measure the flow. Both flow and pressure histories were
recorded and analyzed on a Rockland Dual Channel FFT Signal Analyzer, model
5830B.

In order to verify the performance of the instrumentation, several
exploratory tests were conducted. The first involved the measurement of the
resonant frequency of a Helmholz resonator (bell jar). The resonant frequency
was measured in two ways; using the current experimental set up and with a
microphone placed at the mouth of the bell jar. At resonance there is a
noticeable increase in sound level as recorded by the microphone. This
frequency compared very well with the value obtained from the spectral
analysis, i.e. amplitude and phase information. The second set of verification
tests involved the measurement of the resonant frequency of the human lung as
shown in Fig. 1ll. The results for the different subjects were in the range of
5 to 7 Hz, well within the limits of published data (cf. Ref. 5).

After completing these preliminary tests the device was deemed reliable
for use in measuring the resonant frequency of healty pigs. Due to limited
resources we were only able to examine one pig. The animal was anesthesized in
the usual manner and placed on the multifrequency jet ventilator. The
apparatus was connected to the endotracheal tube and measurements were taken
while the animal was being ventilated as well as when it was taken off the
ventilator. When the animal was being ventilated the apparatus was connected
to the exhilation port of the entrainment module. There was good agreement
between the values obtained by the two different methods.

Since the pressure and flow signals were of low amplitude, it is somewhat
difficult to discern the resonant value from the random noise signals. Hence,
a modification to the usual method was employed. Rather than analyzing the raw
signals, we chose to subtract out the random noise and focus upon dfferences in
the amplitude of the signals. Thus, if one would look at amplitude difference
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as a function of frequency one would observe a zero or near zero value
everywhere except at the resonant frequency. In order to effect this procedure
an ensemble average of values was used, namely sixteen samples.

Open loop random (white) noise was sampled and averaged sixteen times as
was sixteen samples of recorded data taken with the apparatus connected to the
‘animal but disconnected from the ventilator. Recorded data was used since the
response time of the Fast Fourier Transform (FFT) analyzer was too long to
allow for sixteen samples of actual data to be analyzed in real time. The
difference between the open loop (base line) data was compared to the flow and
pressure data resulting in the graph showing a resonant frequency of 3.7 Hz
(cf. Fig. 12). The peak at 1.9 Hz is probably a system effect (see below).
The resonant frequency at 3.7 Hz is further verified by viewing the phase angle
between the flow and pressure (cf. Fig. 13) which for this case is precisely 0
degrees.

An additional experiment was performed by binding the chest of the pig.
This causes the thorax to be stiffer and hence the resonant frequency should
increase. The results of this experiment are shown in figure 14. 1In this case
the resonant frequency has risen to 5.7 Hz, confirming our conjecture. Note
that the peak observed in Fig. 12 remained at 1.9 Hz and did not shift further
indicating that it is a system effect rather than an actual acoustical lung
system resonance.

The procedure and apparatus employed has been shown to be a viable
technique for measuring the resonant frequency of the lung system. As noted
previously, the purpose of these experiments was to demonstrate feasibility.
This objective has been met. Regretfully, in view of the limited resources,
extensive tests could not be performed. However, the actual apparatus,
although suitable for use in an experimental setting, may not be totally
satisfactory for use at the bedside for sick or injured patients. Hence,
alternate methods have been briefly investigated that are based upon forced
excitation methods. There are two techniques which show promise. The first is
the use of the endotracheal pressure signal which is obtained on the
in-hospital version of the APT 1010 jet ventilator. By inspecting the
waveform, preliminary tests indicate that compliance and resistance can be
determined without disconnecting the patient from the ventilator. Another
complementary procedure would use the microprocessor in the ventilator, which
generates the valve driver signals, to generate the white noise and drive the
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solenold valve. This would eliminate the speaker and could make the apparatus
an integral part of the ventilator. These two methods show promise, and could

be pursued 1if deemed desirable in a follow-on effort.

6. CONCLUSIONS AND RECOMMENDATIONS

In view of the body of experimental results and the statistical analyses
conducted, we can conclude that ultra-high frequency jet ventilation has
significant advantages when ventilating lungs in which a large bronchopleural
fistula has formed. The advantages consist of improved ventilation perfusion
matching, as evidenced by improved A-a gradients and a/A ratios, as well as
decreased flow through the bronchopleural fistula. Ultra-high frequency jet
ventilation was also accomplished without any untoward effects with respect to
hemodynamic variables or oxygen delivery to the periphery.

The results, which are extremely promising, lead us to believe that our
ultra-high frequency jet ventilator could be beneficial in the ventilation of
battlefield wounded with penetrating chest injuries of the type investigated.
In order to reach this goal, additional research efforts are required. These
would include further studies on pigs and would culminate in FDA approved human
trials. Efforts would also be directed in the engineering design area in order
to assure that the ventilator would be capable of performing in potentially
inhospitable environments. These endeavors could be the focus of a follow-on

study under Phase II.
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Tests for Randomness

Datat ord

Median = 2 based on 90 observations.

Number of runs above and below median = 49

Expected number = 41

Large samplie test statistic Z = 1.79141

Two-tailed probability of equaling or exceeding Z = 0.0732279

Number of runs up and down = €0

Expected number = 33

Large sample test statistic Z = 1.74344

Two-tailed probability of equaling or exceeding Z = 0.0812572

NOTE: 10 adjacent values ignored.

Table 5. Test for Randomness.

$ =32~




Table of means for a/A Ratio

- - —
Stnd. Irror Stnd. Error 95 Percent Confidence
Level Count Average (internal) (pooled s) for mean
—
amls
1 9 . 9456999 .1166663 .0420686 . 4599689 .6314108
2 9 . 2342474 0418159 .0420686 .1485364 . 3199583
4 9 .1370274 .0238598 .0420686 .0513165 . 2227384
[ 9 . 3722323 .0268431 .0420686 .2865214 . 4579433
7 9 . 2569363 .0761057 .0420686 .1712254 . 3426473
8 9 66353114 .0492771 .0420686 . 97960035 . 7510224
9 9 . 2934169 .0636403 .0420686 . 2077059 . 3791278
10 9 4914407 .0668974 .0420686 . 4057297 5771546
11 9 .488189% 01936195 .0420686 . 4024785 + 5739004
ventls
v 2?7 . 2769844 0422934 .0242883 . 2274992 . 3264696
cJv 2? . 3962989 .0379749 .0242883 .3468136 . 44576414
UHFJV 27 .4882173 .0488772 .0242883 .4387324 . 5377026
sqn
i 27 .4838056 .0506327 .0242883 .4343203 . 5332908
2 27 . 3616704 0412704 .0242883 .3121852 . 4111557
3 27 . 3160246 .0404590 .0242883 . 2665394 . 3655098
amls by ventls
1 ¢V 3 4529807 . 2283629 .0728649 . 3045250 . 6014364
1 G 3 . 2691593 .0112936 0728649 .1207036 . 4176150
1 UHFJ 3 . 9149597 .0185239 .0728649 . 7665040 1.0634154
2 ¢ 3 .09824114 .0261028 .0728649 -.0502146 . 2466968
2 Qv 3 . 2945680 .07925835 .0728649 .1461123 . 4430237
2 UHFJ 3 .3099330 .0093388 .0728649 .1614773 . 4583887
4 <V 3 . 12799353 0578477 .0728649 ~.0204604 2764510
4 CJv 3 .1112084 .0494674 0728649 -.0372476 . 2596638
4 UHFJ 3 .1718790 0077547 .0728649 .0234233 .3203347
6 CV 3 . 3293640 .0608798 .0728649 .1809083 4718197
6 CJv 3 . 39183520 .0312123 .0728649 .2433963 . 3403077
6 UHFJ 3 . 3954810 .0506476 .0728649 . 2470253 . 5439367
7 v 3 .0754127 0071906 .0728649 -.0730430 . 2238684
7 CWv 3 . 2710540 .0829342 .0728649 . 1225983 . 4195097
7 UHFJ 3 4243423 .1788511 .0728649 . 2758866 . 5727980
g Cv 3 . 5795197 0044371 .0728649 . 4310640 . 7279754
8 CJv 3 . 7262350 .0655544 . 0728649 95777793 . 8746907
8 UNWFJ 3 .6901797 .1089184 .0728649 .5417240 .8386354
9 3 0977669 .0214706 .0728649 -.0506888 . 2462226
9 Cv 3 4530240 .1090268 .0728649 . 3045683 .6014797
9 UHFJ 3 . 3294597 0610495 .0728649 .1810040 LA779154
10 ¢ 3 . 3013463 .0325907 .0726649 .1528906 .4498020
10 CJv 3 . 5416763 .0159849 .0728649 . 3932206 .6901320
10 UNHFJ 3 .6312993 .1468739 .0728649 .4828436 . 7797550
11 v 3 .4302330 0296448 .0728649 .2017773 .5786887
11 CQw 3 .5079130 .0315238 .0728649 .3594573 .6563687
11 UNFJ 3 . 5264223 0045828 . 0728649 3779666 .6748760

SR S S S

Total

81

Table 6a. Analysis of Variance Table for a/A Ratio.
Three Factor Balanced Design.

=33~

.3871669 .0140229

.0140229

. 3585966

RS

.4157372




Table of means for a/A Ratio

]

Stnd. Error

Stnd. Irror

95 Percent Confidence

Level Count Average (internal) (pooled s) for mean
__
amnls bu sqn
1 4 3 6874147 . 2191534 0720649 . 3389590 .8358704
1 2 3 4297863 .2294283 .0728649 .2813306 . 5782420
1 3 3 . 9198987 .2134819 0728649 .3714430 . 6683544
2 1 3 . 3019397 .0862513 0728649 .1334840 . 4503954
2 2 3 . 2148833 .07695978 0728649 0664296 3633410
2 3 3 .18591 74 . 0634604 0728649 0374614 .3343728
4 1 3 .2127787 .0160147 0728649 .0643230 .3612344
4 2 3 .1094512 .0284129 0728649 -.0390043 . 2579069
4 3 3 .0888529 .0370797 .0728649 -.0396032 . 2373082
6 1 3 . 4325673 .0263630 0728649 2841116 . 3810230
6 2 3 .4035783 0053349 07268649 . 2931226 . 8520340
6 3 3 . 2805513 .03727835 .0728649 .1320956 4290070
7 1 3 .4093184 1992159 .0728649 . 2608627 .3977744
7 2 3 . 2418689 0858779 0728649 0934132 . 3903246
7 3 3 .1196217 .0359403 0720649 -.02808340 . 2680774
8 1 3 . 8163057 0625646 0728649 . 6680300 . 9649614
8 2 3 .6292320 0442129 .0728649 .4807763 . 1776877
8 3 3 . 5501967 0675518 0728649 4017410 .6986524
9 1 3 .4175223 1534466 0728649 . 2690666 . 5659760
9 2 3 . 2942256 .08635217 .0728649 .1057699 .4026813
9 3 3 . 2085027 0741280 0728649 .0600470 "« 3569564
10 ¢ 3 . 5724427 .1907307 0728649 .4239870 . 7208984
10 2 3 4607687 1053929 0728649 .3123130 . 6092244
10 3 3 4411107 .0346372 0728649 . 2926350 . 5895664
11 1 3 . 5037607 .0159870 .0728649 . 3553050 .6522164
11 2 3 .5112377 .0375988 0728649 .3627820 6396934
11 3 3 . 4495700 .0411898 .0728649 .3011143 . 5980257
ventls by sqn
V1 9 . 3694098 .091789%4 .0420686 .2836989 . 4991208
v 2 9 . 2397596 .0676846 .0420686 . 1540487 . 3234706
cv 3 9 .2217838 .0530254 0420686 .1360728 . 3074947
CIv 1 9 . 4762956 .0669168 0420686 . 3905846 . 5620065
CJv 2 9 . 3935968 .0637243 .0420686 . 30788359 .4793078
CJv 3 9 . 3190042 .0630403 .0420686 .2332933 . 4047454
UHFJ 1§ 9 .60357113 .0926938 . 0420686 . 5200004 .6914223
UHFJ 2 9 4516549 .0704776 . 0420686 . 36359439 . 3373658
UHFJ 3 9 . 4072858 .0837969 . 0420686 .3215748 . 4929967
Total 81 .3871669 .0140229 .0140229 . 3585966 4157372
Table 6a. Continued.
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Source of variation
.

Sum of Squares d.f.

MAIN EFFICTS
anls
ventls
sqn

2-FACTOR INTERACTIONS

anls ventls

anls sqn

ventls sqn
RESIDUAL

TOTAL (CORR.)

3.1316148
2.1195472
. 6057387
. 4063589

. 9095322
. 7603480
.1321107
.0170736
. 5096929

4.5508399

12
8
2
2
36
16
16

4

32

80

Mean square

F-ratio

Sig. level

+ 2609679
. 2649396

"+ 3028693

.2031795

.0252648
.0475217
.0082569
.0042684

.0159279

16.384
16.634
19.015
12.756

1.586
2.964
.548
.268

I .
.0000

0000
0000
. 0001
.0944
.0041
NN
. 8964

0 maissing values have

been excluded.

Table 6b. Significance Test - F Test - a/A Ratio.
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Table of means for a/A Ratio

[M
Stnd. Irror Stnd. Error 93 Percent Confidence
Level Count Average (internal) (pooled ) for aean
E M
amls
1 9 . 5437000 .1166664 0480742 4495133 .6418846
2 12 . 2130527 .0339995 .0416333" 1297544 . 2963510
3 6 1915030 .0972340 .0588787 .0737034 . 3093066
4 9 . 1370273 .0238%98 0480742 .0408429 .2332121
6 9 . 3722324 .0268131 0400742 . 2760478 4604170
? 9 . 2969364 .0761057 .0480742 .1607518 .3531214
8 9 .6693115 .0492770 0480742 . 5691269 . 7614961
9 9 . 2934169 .0636403 0480742 .1972323 . 3896015
10 9 . 4914407 .0668973 0480742 . 3952560 . 5876233
14 9 .488189%4 019361535 0480742 « 3920047 .9843740
ventls :
v K 4] . 2939143 .0397739 .0263313 .2032318 . 3085967
cJv 30 .3704274 0371874 0263313 3177449 .4231099
UKFRJV 30 . 4722568 .0470064 .0263313 . 4195744 . 5249393
amls by ventls
T ¢V 3 . 4529807 . 2283630 .0832670 . 28638414 .6199774
1 CJv 3 .26915% ,0112934 .0832670 .1025628 4357561
1 UNHFJ 3 . 9149598 .0185237 .0832670 . 7483634 1.0815564
2 ¢ 4 0906745 .0199482 0721114 ~.0536024 . 2349514
2 CW 4 . 2643058 .0636925 0721114 .1200289 . 4085828
2 UHFJ 4 .2841778 .02635883 0721114 .1399008 . 4284547
3 ¢ 2 0654371 .0193508 .1019809 -.1386013 . 2694755
3 Qv 2 .1196172 .0637227 .1019909 -.0844212 .32365%6
3 UKHFJ 2 . 3894607 . 2777305 .1049809 .1854223 .5934991
4 <V 3 . 1279954 .0578178 .0832670 -.0386012 . 29435924
4 CJV 3 . 1112080 0494673 . 0832670 -.0553887 . 2778046
4 UHFJ 3 .1718794 0077544 .0832670 .0052825 .3384758
6 ¢V 3 . 3293640 .0608801 .0832670 .1627674 . 4959607
6 CJV 3 .3918519 .03£2120 .0832670 . 2252533 . 5584486
6 UHFJ 3 . 3954843 0506475 .0832670 . 2268846 .5620779
7 <V 3 0754127 0071906 .0832670 -.0911840 . 2420093
7 CW 3 . 27105414 .0829344 .0832670 . 1044575 .4376508
7 UHFRJ 3 4243425 .1788509 .0832670 2577438 .9909391
8 Cv 3 . 3795198 .0844570 .0832670 . 412924 7461164
8 CJv 3 . 7262348 . 0655544 .0832670 .5596382 .8928315
8 UHFJ 3 . 6901800 .1089184 .0832670 . 5235833 .8567766
9 < 3 0977670 0244707 .0832670 ~-.0688296 . 2643637
9 CJv 3 4530240 .1090268 .0832670 . 2064274 .6196207
9 UHFJ 3 . 3294397 .0610498 .0832670 .1628630 . 4960563
10 ¢V 3 + 3013464 .09525908 .0832670 1347494 4679427
10 CJv 3 5416763 .0159648 .0832670 .3730797 . 7082730
10 UNIJ 3 .6312996 1468744 .0832670 . 4647029 . 7978962
11 v 3 .4302328 .0296448 .0832670 . 2636362 . 5968295
11 CJv 3 . 5079129 .0315238 .0832670 . 3413163 6745096
11 UHPY 3 . 5264223 .0045828 .0832670 . 3598237 .6930190
o
Total 90 . 3661995 .0152024 .0152024 .3357833 . 3966158

Table 7a. Analysis of Variance Table for a/A Ratio.
Three Factor Balanced Design.
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Analysis of Variance for aarnew

—_—_*“
Source of variation Sum of Squares d.f. Mean square T-ratio Sig. level
- 3
MAIN EFFECTS 3.1658474 11 . 2878043 13.837 .
amls 2.4629813 9 .2736646 13.157 .0000
ventls . 7028661 2 . 3514330 16.896 .0000
2-FACTOR INTERACTIONS . 7907706 18 0439317 2.112 .0162
amls ventls . 7907706 18 .0439317 2.112 .0162
RESIDUAL 1.2480114 60 .0208002
TOTAL (CORR.) 5.2046294 89

0 aissing values have been excluded.

Table 7b. Significance Test - F Test a/A Ratio.
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Two-Sample Analysis Results

Sample Statistics: Number of Obs.
iverage
Variance
Std. Deviation
Hedian

Conf. Interval For Diff. in Means:
(Equal Vars.) Sample £ - Sample 2
(Unequal Vars.) Sample 1t - Sample 2

Conf.
Sample 1 ¢ Sample 2

Hypothesis Test for HO: Diff = O
vs Alt: NE
at ARlpha = 0.04

Interval for Ratio of Variances:

cv UHFJV Pooled
30 30 60
0.255914 0.472257 0.364086
0.0474569 0.0662873 0.0568731
0.217851 0.297463 0.238481
0.178977 0.42485 0.310624
99 Percent

-0.380363 -0.052322 58 b.F.
-0.380516 -0.0521696 56.5 D.F.
95 Percent

0.340768 1.50424 29 29 D.F.

Computed t statistic = -3.513495
Sig. Level = 8.64609E-4
s0 reject HO.

Sample Statistics: Number of Obs.
Average
Variance
Std. Deviation
Median

Conf. Interval For Diff.
(Equal Vars.)
(Unequal Vars.)

in Means:
Sample 1 - Sample 2
Sample 1 - Sample 2

Conf.
Sample 1 + Sample 2

Hypothesis Test for HO: Diff = O
vs Alt: NE
at Alpha = 0.1

Interval for Ratio of Variances:

cIv UHFJV Pooled
30 30 60
0.370427 0.472257 0.421342
0.041487 0.0662873 0.0538872
0.203684 0.25%463 0.232136
0.35379% 0.42485 0.386262
90 Percent

-0.20204 -1.6188E-3 S8 D.F.
-0.202126 -1.53256E-3 55.1 D.F.
S Percent

0.297088 1.31495 29 29 D.F.

Computed ¢t statistic = -1.69893
Sig. Level = 0.0946903
so reject HO.

Sample Statistics: Number of Obs.
Average
Variance
Std. Deviation
Median
Conf. Interval For Diff. in Means:
(Equal Vars.)
(Unequal Vars.)

Conf.

Hypothesis Test for HO: Diff = O
vs Alt: NE
at Alpha = Q.05

Sample 1 - Sample 2
Sample § - Sample 2

Interval for Ratio of Variances:!
Sample { : Sample 2

cv cJgv Pooled
30 30 60
0.255914 0.370427 0.313174
0.0474589 0.041487 0.044473
0.2170854 0.203684 0.210886
0.178977 0.3953796 0.2791114
95 Percent

-0.223533 -5.49374E-3 58 0.F.
-0.223543 -5.48327E-3 57.7 D.T.
b Percent

0.544473 2.40344 29 29 )0.F.

Computed t statistic = -2.10307
Sig. Level = 0.0398091
s0 reject HO.

Table 7c. Significance Test - T Test - a/A Ratio.
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Table of means for BPF

Level Count
anls
1 9
2 9
4 9
6 9
7 9
8 9
9 9
10 9
11 9
ventls
cv 27
cv 27
UHFJV 27
sqn
1 27
2 27
3 27

amis by ventls

O WO DWW~ OO d NN

10
10
10
11
11
1t

cv
v
UHFJ
v
CJv
UHFJ
v
CJv
UHFJ
v
cJv
UHFJ
cv
v
UHFJ
v
CJv
UHFJ
v
CJv
UHFJ
v
v
UHFJ
cv
CJv
UHFJ

W oW W WWWWiWwwWwiwwwwwwwwwwwwwwwwww

Stnd. Irror Stnd. Irror

e e

0 S s A

95 Percent Confidence

fverage (internal) <(pooled s). for sean
M
3029.333 840.1590 307.7458% 2401.533 3657.432
2353. 9556 611.7464 307. 743985 1725.757 2984.354
2306.000 423.9774 307. 745835 1678.201 2933.799
1468. 444 293. 9405 307.74589 840.646 2096.243
5995.111 840.6977 307.74585 9367.312 6622.910
2783.778 846.1962 307. 74989 2155.979 3411.976
7044.556 1483.1340 307. 74585 6416.757 7672.334
2549.778 574.8494 307. 74585 1921.979 3177.576
3416.222 279.6631 307. 745865 2788. 424 4044.021
5828.852 604.3654 177.6713 5466.392 6191.312
2774.037 361.7824 177.677143 2411.577 3136.497
1712.704 231.6688 177.677495 1350.244 2075.1463
3356.481 542.3135 177.67745 2994.022 3748.944
3373.185 S544.8269 177.67745 3010.725 3735. 645
3585.926 §555.7968 177.67145 3223.466 3948, 386
$693.000 1324.7313 533.03145 4605.621 6780.379
2831.667 299.6922 533.03145 1744.288 3919.046
563.333 134.1794 533.03145 -524.046 1650.742
4722.000 367.4783 533.03145 3634.624 5809.379
1504.000 175.3207 533.031435 416.621 2591, 379
834.667 76. 6645 533.03145 -252.712 1922.046
3922.000 294.9328 533.03145 2834.624 5009.379
1604.000 128.8462 533.03145 S16.621 2691.379
1392.000 289.2525 533.03143 304.624 2479.379
2490.667 297.3518 533.03145 1403.288 3578.046
1198.667 118. 2446 533.03145 111.288 2286.046
716.000 304.0839 533.03145 -374.379 1803.379
7814.333 1528.1935 §33.03145 6726.954 8901.712
6939.667 467.2659 533.03145 5852.288 8027.046
3231.333 86.2947 $33.03145 2143.954 4318.742
5785.667 1218.6312 $33.03145 4698.288 6873.046
1564.000 421.5286 533.03145 476.624 2651.379
1001.667 303. 7600 533.03145 -85.712 2089.046
12903. 333 155.2443 533.03145 11845.954 13990.712
4536.333 297.1365 533.03145 3448.954 5623.712
3694.000 602.0872 533.03145 2606.621 4781.379
4790.333 271.6305 533.03145 3702.954 5877.712
1534.333 305.3754 533.03145 446.954 2621.712
1324.667 149.4259 533.03145 237.288 2412.046
4338.333 306.0405 533.03145 3250. 954 5425.712
3253.607 82.3355 533.03143 2166.288 4341.046
2656.667 333.5353 533.03145 1569.288 3744.046
. — ————— 4
3438.531 102. 5820 102.58195 3229.265 3647.797

Total 81

Table 8a. Analysis of Variance Table - Flow Through Bronchopleural
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Table of means for BPF

Stnd. Error Stnd. Error 95 Percent Confidence
Level Count Average (internal) (pooled s) for mean
amis by sen
1 1 3 2281.000 994.9675 533.031435 1193.621 3368.379
1 2 3 3258.000 1649.8948 533.03145 2170.621 4345.379
t 3 3 3549.000 2077.7683 533.03145 2461.621 4636.379
2 1 3 2257.6867 1213.95161 523.03445 1170.288 3345.046
2 ¢ 3 2623.607 13514, 6445 533.03145 1538.288 3713.046
e 3 3 2177.333 1012.1C68 333.03445 1065.954 3264.712
4 1 3 2037.000 728.0730 533.03445 945,621 3124.379
4 2 3 2319.333 828.3883 533.03445 1231.554 3406.712
4 3 3 £981.667 6§33.7088 533.903145 1474.288 3649.046
6 1 3 1919.667 §77.2008 533.03145 832.288 3007.046
6 2 3 1215.333 . 4355.4047 533.03145 127.954 2302.712
5 3 3 1275.333 565.4619 532.03145 182.954 2357.712
Tt 3 5828, £67 2081.758¢8 933.03%43 5805.288 7534.046
T 2 3 4520.667 855. 3098 533.03445 3833.288 6008.046
7T 3 3 6168.000 1554.7566 933.03145 $5080.621 7253.379
8 ¢ 3 2382. 667 908.1897 532.03445 1255.238 3470.046
2 2 3 3238.667 2429. 6049 333.03L43 2451.285 4326.046
g 3 3 2730.000 1295.8175 533.03445 1642.621 3647.379
2 14 3 6410.667 3119.95772 533.034453 9323.283 7498.046
a 2 3 7413.333 2947, 5448 933.03443 6025.954 8200.712
2 3 3 7609.667 2759.2587 533.03145 6522.288 8697.046
10 1 3 2454.667 1039.9174 533.03145 1367.288 3542.046
i¢ 2 3 2621.667 1369.6399 533.03445 1534.288 3709.046
10 3 3 2573.000 1000.3519 533.03145 1485.621 3660.379
11 1 3 3568.333 440.4242 933.03145 2480.954 4655.712
11 2 3 3C46.0C0 $22.0013 533.0344 1655. 621 4133.379
1L 3 3 3834.333 $0¢. 7278 332.03443 2546.952 4724.712
ventls by sqn
Vi g 5551.889 1160.4807 307.74533 4964.090 6219.688
v 2 S 5914.00 1046.5309 307.74583 5286.201 - 6541.799
VU 3 g 3580.E€7 1052. 74 307.743523 5352.868 §608.4635
<V L 3 23€3.2%: 533.3735 207.74323 2240. 342 2493.610
SOV 2 z 222,536 £24. 5353 3CT.7e3E8 $533.7C7 2i5..334
Civ 3 3 Z237.444 733.7.3% 30T.T2333 Z23Z2.845 2318.243
UHFJ 4 S 1605.444 377.06C8 307.745¢C 9gi.6q% 2237.243
UHFS 2 s 1£42.000 285.0591 3GT.T4SES 1054, 261 228%.799
L4 U] 2 1338.¢57 47,5430 207, 74322 22S8.€E3 314,455
Total 81 3438.521 102. 56820 102.358195 3223.2635 3647.797
Table 8a. Continued.
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Analysis of Variance for BPF

Source of variation

Sum of Squares d.f. Hean square

COVARIATIS 1.41390K0008 {1 1.1390X0008
aarnev 1.139080008 1 1,.439010008
MAIN EFFECTS 4.0049£0008 12 33373930
anis 2.367310008 8 29591422
ventls 1.1676E0008 2 58378604
sqn 2.8188£0006 2 1409393
2-FACTOR INTERACTIONS 91770446 36 2549179.1
amls ventls 77814387 16 4863399.2
anls sqn 128968563 16 806160.2
ventls sen 650476 4 162619.0

RESIDUAL

26423395 3t 852367.59

F-ratio Sig. level
133.625 .0000
133.625 .0000
39.454 .0000
34.717 .0000
68.490 .0000
1.654 .2078
2.991 .0013
S.706 .0000
. 946 .5317
.194 9414

0 missing values have been excluded.

COVARIATES coefficient
a/A Ratio -2817.9675

Table 8b. Significance Test - F Test - Flow Through

Bronchopleural Fistula.
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Two-Sample Analysis Results

_ -
cv UHFJV Pooled
Sample Statisticst Number of QObs. 30 0 60
fiverage $501.7 1675.4 3568.955
Variance 9.8467616 1.3627216 3. 6047416
Std. Deviation 3137.95 1167.36 2367.43
Median 4519 1346 3066.5
Conf. Interval For Diff. in Means: 99 Percent
(Equal Vars.) Sample 1 - Sample 2  2198.04 35454.356 S8 D.TF.
(Unequal Vars.) Sample {1 - Sample 2 2165.87 5486.73 36.9 D.F.
Conf. Interval for Ratio of Variances: 95 Percent
Sample 1 + Sample 2  3.43919 15.1845 29 29 0.F.

Hypothesis Test for HO: Diff = O
vs Alt: NE
at Alpha = 0.04

Computed t statistic = 6.25964
Sig. Level = 5.06755E-8
so reject HO.

Sample Statistics! Number of Obs.
fiverage
Variance
Std. Deviation
Median

Conf. Interval For Diff. in Means:
(Equal Vars.) Sample 1 - Sample 2
(Unequal Vars.) Sample { - Sampie 2

Conf. Interval for Ratio of Variances:

Sample { ¢ Sample 2

Hypothesis Test for HO: Diff = 0
vs Alt: NE
at Alpha = 0.04

cJv UHFJV Pooled
k1 30 60
2737.5 1675.4 2206.45
3.21029L6 1.36272E6 2.28654L6
1791.73 1167.36 1512.12
2099.95 1346 1758

99 Percent

22.1048 2102.1 58 D.F.
16.3237 2107.88 49.9 0.T.

95 Percent

1.12126 4.94955 29 29 D.F.

Computed t statistic = 2,.72035
Sig. Level = 8.59223E-3
so reject HO.

Sample Statistics: Number of Obs.
Average
Variance
Std. Deviation
Median

fnterval For Diff. in Means:
Sample § - Sample 2
Sample 1 - Sample 2

Conf.
(Equal Vars.)
{Unequal Vars.)

Interval for Ratio of Variances:
Sample { * Sample 2

Conf.

Hypothesis Test for HOt Diff = 0
vs Altt NE
at ARlpha = 0.04

cv cav Pooled
0 30 60
$501.7 2737.5 4119.6
9.8467616 3.21029t6 6.52852K6
3137.95 1791.73 2553.1
4519 2059.5 3367
99 Percent

1006.87 4521.53 S8 b.F.
991.367 4537.03 46.1 D.F.

93 Percent

1.45989 6.44432 29 29 b.FL.

Coaputed ¢t statistic = 4.189%4
Sig. Level = 9.6297L-5
so reject HO.

Table 8c. Significance Tests - T Test - Flow Through
Bronchopleural Fistula.
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APPENDIX I

Following the dJdevelopment of our high frequency jet ventilator, laboratory
tests were conducted to determine the ventilator's capabilities. The ventilator
was tested on rigid systems and systems whose compliance was similar to that of
the lung. Ventilation was also done in a system consisting of high
resistance/low compliance chamber in parallel with high compliance/low
resistance chamber. This scenario is represenative of the most difficult
patients to ventilate in an ICU setting. The studies demonstrated that the
ventilator was capable of delivering tidal volumes and flows equal to or
surpassing existing jet ventilators. The ventilator adds on extended frequency
both on the high and low side increasing its flexibility over standard jet
ventilators. Two hundred fifty (250) to five hundred (500) ml of CO, per
minute were pumped into the jars or the elastic lung models. At all
frequencies our ventilator was able to achieve adequate ventilation as
demonstrated by equilibrium PCO, < 5%.

Following this, the first of three groups of animal testing was begun. The
pig was chosen as our test animal because its lungs are less compliant than
those of a human and there is less collateal ventilation between alveoli,
creating a situation similar to a diseased human lung. Five 40-pound pigs were
anesthestisized using nembutal. Arterial and venous lines were placed. The
pigs were monitored electrocardiographically. Ventilation was accomplished with
FIO, of .21. The frequency of the jet ventilator was set at either 10 or 20
Hz. Inspiratory time ratio was 307 and the driving pressure (20-50 PSI) was
set to achieve adequate ventilation.

Four pigs were ventilated for 48 hours, one for 30 hours. Animals were
monitored at frequent intervals with respect to arterial blood gases, blood
pressure, and hemodynamic side effects. At the end of the test period, the
animals were sacrificed and autopsies of the lung were performed to determine
the presence of untoward effects from the jet ventilation. The studies
demonstrated no evidence of barotrauma was present at the end of 48 hours of
ventilation. Arterial blood pressures and hemodynamic status were stable
throughout. Arterial blood gases demonstrated that the alveolar-arterial
gradient was significantly smaller on our ventilator than on conventional
ventilation. These data suggested that our ventilation may have eliminated a

significant degree of ventilation perfusion mismatching. In one pig a mild
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tracheitis developed at the end of the endotracheal tube. This was at least in
part due to lack of humidification of the gases used during this particular
experiment. These animals were compared to a previous study performed at
Hartford Hospital with conventional ventilators. The pigs ventilated
conventionally demonstrated significant evidence of barotrauma. Our conclusion
from the study is that our ventilator can ventilate animals for a prolonged
period of time and maintain adequate arterial oxygen tensions and that
atelectasis and other forms of trauma to the lung are not common with this mode
of ventilation. In fact, when compared to previous studies done on
conventional ventilators, there appeared to be less trauma to the animal during
this form of ventilation.

The next experiment was performed on five 40-pound pigs. The pigs were
anesthesized with nembutol. Arterial and venous lines were introduced. A piano
wire was inserted bronchoscopically into either the right or left main stem
bronchus and was allowed to pass through the lung parenchyma and out through
the chest wall. Over this piano wire a catheter with a known diameter tip was
then passed through the chest wall and was bronchoscopically observed to
occlude an airway of similar size to the measured diameter of the tip of the
catheter. These catheters, usually 3 or 4, were then connected to pressure
transducers and airway pressure measurements were made during various maneuvers
on the high frequency jet ventilator. The animals were ventilated for varying
times from 1 Hz to 30 Hz, and pressure measurements were taken from the
endotracheal tube as well as from the peripheral catheters which were inserted
according to the protocol. ABGs were monitored on all frequencies. All animals
developed broncho-pleural fistulae due to the passing of the plano wire through
the chest wall. Chest tubes were inserted to compensate. In spite of the fact
that these animals had bilateral broncho-pleural fistulae, adequate ventilation
was maintained in all experimental animals at all frequencies. Airway pressure
measuremnts were obtained and allowed us to observe the effects of increasing
frequency and change in inspiratory time with respect to airway pressure and
arterial blood gas analysis.

Another sequence of experiments included a protocol in which 80-pound pigs
were given intravenous oleic acid to induce an ARDS-like syndrome. A
comparison was made between conventional ventilation and our ventilator with
respect to hemodynamic variables, oxygenation, and degree of decompensation for

a given lung injury. Twenty animals were studied. The data showed that the
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mean cardiac output was higher using ultra-high frequency jet ventilation as
compared to conventional ventilation with a significance level of a=.0l. The
a/A ratio was better in the ultra-high frequency ventilation group and QS/QT
(the left to right shunt) was lower, but in the small group of animals we were

unable to reach statistical significance in the variables.
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a/A RATIO

0.62

0.32

0.42

0.32

0.2

95 Percent Confidence
intervals for Factor Means

J ! !

cv - Conventional Ventilaotor
CJV -—Conventional Jet Ventilator (2.0 Hr)

UHFJV - Ultra High Frequency Jet Ventilator (7.5Ha) | ‘

...................................................

-4
-4 | |
v CJv UHFJV
VENTILATOR

Fig. 2. a/A Ratio for Different Ventilators.
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a/A RATIO

0.56

0.3

0.41

0.36

0.31

0.26

95 Peroent Conlidence
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